Experimental Evidence of Three–wave Zakharov–Manakov Solitons

نویسندگان

  • F. Baronio
  • M. Conforti
  • C. De Angelis
  • S. Wabnitz
  • M. Andreana
  • V. Couderc
  • A. Barthelemy
چکیده

Three–wave nonlinear resonant interaction (TWRI) is typically encountered in the description of any conservative nonlinear medium where the nonlinear dynamics can be considered as a perturbation of the linear wave solution, the lowest–order nonlinearity is quadratic in the field amplitudes, the three–wave resonance can be satisfied [1]. Indeed TWRI is the lowest–order nonlinear effect for a system approximately described by a linear superposition of discrete waves. TWRI has been extensively studied alongside with the development of plasma physics, since it applies to the saturation of parametric decay instabilities, nonlinear collisions of large–amplitude wave packets, radio frequency heating, and laser–plasma interactions [2, 3, 4]. In the domain of nonlinear optics, TWRI describes parametric amplification, frequency conversion, stimulated Raman and Brillouin scattering [5, 6, 7]. TWRIs have also been studied in the context of interactions of water waves [8, 9], interactions of bulk acoustic waves, surface acoustic waves [10] and wave–wave scattering in solid state physics. The physical model describing TWRI is completely integrable [11]. Integrability gives us mathematical tools to investigate several problems such as the evolution of given initial physical data by exploiting spectral methods [12, 13], and the existence of particular analytic solutions (f.i. solitons) [14, 15]. Soliton solutions are of particular interest in various nonlinear environments: from sound waves and charge–density waves to matter waves and electromagnetic waves [16, 17]. In spite of the large diversity of the systems in which soliton exist, the basic properties of solitons always follow the same trends [18]. The most fascinating feautures of solitons are their particle–like interaction phenomena [19, 20], and the interactions between solitons can result in soliton fusion, fission and annihilation, spiralling, breakup and so on. Here we present the TWRI dynamics of two input wave packets at frequency ω1, ω2 which mix to generate a field at the sum frequency ω3. Depending on the input intensities, three different regimes exist. Linear regime: the wave packets

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton Solution of the Integrable Coupled Nonlinear Schrödinger Equation of Manakov Type

The soliton solution of the integrable coupled nonlinear Schrödinger equation (NLS) of Manakov type is investigated by using Zakharov-Shabat (ZS) scheme. We get the bright N-solitons solution by solving the integrable uncoupled NLS of Manakov type. We also find that there is an elastic collision of the bright N-solitons. [email protected] [email protected] 1

متن کامل

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

Interaction of dark-bright solitons in two-component Bose-Einstein condensates

We study the interaction of dark-bright solitons in two component Bose-Einstein condensates by suitably tailoring the trap potential, atomic scattering length and atom gain or loss. We show that the coupled Gross-Pitaevskii (GP) equation can be mapped onto the Manakov model. An interesting class of matter wave solitons and their interaction are identified with time independent and periodically ...

متن کامل

General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations

We derive the soliton matrices corresponding to an arbitrary number of higherorder normal zeros for the matrix Riemann–Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix R...

متن کامل

New Exact Solutions of Some Two-Dimensional Integrable Nonlinear Equations via ∂-Dressing Method

In the last two decades the Inverse Spectral Transform (IST) method has been generalized and successfully applied to various (2 + 1)-dimensional nonlinear evolution equations such as Kadomtsev–Petviashvili, Davey–Stewardson, Nizhnik–Veselov–Novikov, Zakharov–Manakov system, Ishimory, two dimensional integrable sine-Gordon and others (see books [1, 2, 3, 4] and references therein). The nonlocal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009